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Entropic forces in dilute colloidal systems
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Depletion forces can be accounted for by a contraction of the description in the framework of the integral
equations theory of simple liquids. This approach includes, in a natural way, the effects of the concentration on
the depletion forces, as well as energetic contributions. In this paper we systematically study this approach in
a large variety of dilute colloidal systems composed of spherical and nonspherical hard particles, in two and in
three dimensions, in the bulk and in front of a hard wall with a relief pattern. We show by this way the form
in which concentration and geometry determine the entropic interaction between colloidal particles. The ac-
curacy of our results is corroborated by comparison with computer simulations.
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I. INTRODUCTION

Complex fluids are composed of a large amount of par-
ticles of many different species. For example, a clean aque-
ous suspension of polystyrene spheres contains, obviously,
the polystyrene spheres and the water molecules, but also
ions dissociated from the surface of the spheres, called coun-
terions, and at least two different species of salt ions. The
size of the first ones ranges from about some tens of nanom-
eters, up to several microns. The other particles are of sub-
nanometer dimensions. When looking at this suspension by
means of light scattering, for example, only the big spheres
seem to be present in the system, since they are the only ones
able to affect the photons of wavelengths of the order of
micrometers. Therefore, in this example the experimental ac-
cess to the system is limited, and we can only observe a part
of it. The physics of this part, however, is determined by all
the existing particles, observed or not. Regardless of the kind
of condensed matter system that we might be able to imag-
ine, and of the experimental method that we might propose
in order to look inside it, the conclusion is always the same:
We can observe only a part of the system, but the physics of
this part is also determined by the rest. Physicists deal with
the restricted nature of the experimental observations by de-
veloping contracted pictures, or effective theories, containing
parameters related to the unobserved variables. The basic
concept behind this kind of approach is the effective pair
interaction potential between the observed particles. Deple-
tion forces are a particular case of this kind of interaction,
which describe the phase of a great variety of colloidal and
polymeric systems with an important excluded volume con-
tribution to the free energy.

The term depletion forces originally refers to the attrac-
tion between two colloidal particles arising when macromol-
ecules are put into the suspension �1,2�. This attraction re-
sults from the expulsion of added macromolecules from the
gap between two approaching particles, giving rise to an im-
balance between the osmotic pressures inside the gap and
outside it and, therefore, to a decrease of the free energy of
the system when the particles come together. This phenom-
enon has been successfully studied in the usual case that the

system can be modeled as a binary mixture of hard spheres,
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as in the case of uncharged globular macromolecules and
spherical colloidal particles, by means of perturbations
theory �3,4�, density functional theory �5–7�, and integral
equations theory �8�. Moreover, some attempts to account for
polymer nonideality beyond the hard spheres model have
also been reported, using extensions of the theoretical frame-
works mentioned above �8–11�, as well as self-consistent
mean field calculations �12�. Indeed, depletion forces can be
strongly affected if van der Waals or coulombic interactions
are present in the system.

With regard to the relative merits of each approach, it can
be said that perturbations theory straightforwardly allows for
the incorporation of some geometrical effects on the deple-
tions forces, as in the case of a mixture of spherical and
nonspherical colloidal particles �13,14�, but makes it very
difficult to include concentration effects and energetic con-
tributions in the theoretical scheme �4�. The approaches
based on the density functional theory �DFT� incorporate
otherwise, additionally to some geometrical effects, as in the
case of a colloidal mixture in front of a curved hard wall
�15,16�, concentration effects in a natural way. However, the
energetic contributions to the depletion forces are only very
hard to capture. Finally, the approach based on the integral
equations theory �IET� captures both concentration effects
and energetic contributions in a natural way, and, as we show
in this work and in a previous paper, also the effects of the
geometry of the components of the colloidal system �17�. In
addition, IET seems to work better than DFT for systems in
even dimensions �18,19�. The method based on the DFT
works better in extreme situations, as in the case of very
large differences in the size of the colloidal particles, but the
approach based on the IET is far easier to implement, both
schemes providing an excellent quantitative description of
the depletion forces, when they are compared with computer
simulations. Actually, the distinction we make between den-
sity functional theory and integral equations theory is quite
artificial. In fact, IET can be obtained from DFT �20�. Nev-
ertheless, once the equations of IET are obtained from DFT,
the methods to work with them differ from the methods of
DFT to such an extent that both are very often identified in

the literature as different routes.
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The integral equations theory represents a natural starting
point for the implementation of the contraction formalism
from which the depletion forces are determined. The basic
idea is that depletion forces are a special case of the more
general effective interactions resulting from a contraction of
the description of liquid mixtures. Therefore, if certain com-
ponents of a mixture are not explicitly considered, their in-
fluence on the structure of the remaining particles has to be
included in the effective interaction potential between the
latter ones. This is obtained by demanding the spatial distri-
bution of the “observed” particles to be the same as in the
original mixture. Technically, this is done by rewriting the
Ornstein-Zernike equation for the original mixture as an ef-
fective Ornstein-Zernike equation for the remaining par-
ticles, and connecting it with the effective interaction poten-
tial by means of an appropriate closure relation. This idea
was first implemented in order to calculate the interaction
between two charged macroions immersed in a bath of small
counterions and salt ions �21�, as well as in further ap-
proaches to the same problem �22,23�. We consider here the
case of large hard spheres immersed in a bath of smaller
spherical and nonspherical hard particles in order to describe
depletion forces of only entropic nature. In this paper we
systematically study a large variety of dilute colloidal sys-
tems composed of spherical and nonspherical particles, in
two and in three dimensions, in the bulk and in front of a
hard wall with a relief pattern. We show by this way the form
in which concentration and geometry determine the entropic
interaction between colloidal particles, leading to surprising
results. For instance, the design of surfaces of entropic po-
tential.

After a brief introduction, we summarize in Sec. II the
integral equations theory of liquid mixtures. Then, the con-
traction of the description procedure and its meaning are ex-
plained in Sec. III. Here, some computer simulation results
for two-dimensional binary mixtures of hard disks are shown
in order to clarify some of the involved ideas. In Sec. IV the
general formulation of depletion forces in multicomponent
systems is presented, and the resulting equations are explic-
itly written for dilute systems. In Sec. V the particular cases
of two- and three-dimensional binary and ternary mixtures
are discussed. Section VI deals with colloidal mixtures in
front of a flat, or concave, or convex hard wall. The results
obtained in Sec. VI are carefully worked up in Sec. VII to a
method of entropic engineering, which allows the design of
surfaces of entropic potential. The effects of the geometry of
the components of the system are addressed in Sec. VIII,
where three-dimensional binary mixtures of hard spheres and
hard spherocylinders are studied. Section IX deals with con-
centration effects and energetic contributions, as far as it is
possible to obtain information about from the dilute limit in
our equations. Finally, the paper ends with a section of con-
clusions.

II. INTEGRAL EQUATIONS THEORY

In an homogeneous colloidal mixture of p spherical spe-
cies, the total correlation hij�r� between a particle of species
i and a particle of species j, separated by the distance r, can
051404
be expressed in a logical, almost graphical form by the ex-
pansion

hij�r� = cij�r� + �
k=1

p

nk�
V

cik�r��ckj��r − r���dr�

+ �
k,l=1

p

nknl�
V
�

V

cik�r��ckl�r��clj��r − r� − r���dr�dr�

+ ¯ , �1�

where the function cij�r� represents the direct correlation be-
tween particles i and j, defined in such a way that hij�r�
includes all possible correlations involving all the N
=�i=1

p Ni particles in the volume V; Ni is the number of par-
ticles of species i and ni=Ni /V its bulk number density. The
second term of the right hand side of Eq. �1� represents all
links between two particles mediated by a third one. The
third term of the right hand side represents all links between
two particles mediated by two other particles, and so forth.
In highly dilute systems, the direct correlation function re-
duces to the pair interaction potential uij�r� between the par-
ticles, so far they do not overlap, scaled with the thermal
energy; cij�r�=−uij�r� /kBT �24�. The minus sign guarantees
that the total correlation function at short distances becomes
negative �positive� for repulsive �attractive� interactions.

Equation �1� is a geometrical series and can therefore be
rewritten as the well known Ornstein-Zernike equation �OZ�
�24�,

hij�r� = cij�r� + �
k=1

p

nk�
V

cik�r��hkj��r − r���dr�, �2�

which needs a closure relation linking the structure functions
hij�r� and cij�r� with the pair interaction potential uij�r� for
its solution. This closure relation has the following general
form �24�

cij�r� = − �uij�r� + hij�r� − ln�1 + hij�r�� + bij�r� , �3�

where �=1/kBT and bij�r� is a structure function known as
bridge function. Further approximations for bij�r� are neces-
sary in order to close the scheme.

One of the most successful closure relations is an empiri-
cal one proposed by Rogers and Young �RY� �25�, which has
the form

cij�r� = exp�− �uij�r���1 +
exp��ij�r�f ij�r�� − 1

f ij�r� 	 − �ij�r� − 1.

�4�

Here, �ij�r�=hij�r�−cij�r� is the indirect correlation function
and f ij�r�=1−exp�−�ijr� is the mixing function. The mixing
parameter �ij is obtained by demanding thermodynamic con-
sistency of the solution of OZ. This can be illustrated by
remembering the contribution of Biben and Hansen �26,27�,
where they studied asymmetric binary mixtures �p=2� of
hard spheres by means of OZ+RY. The mixing parameter
was obtained in their work from the assumption that it scales
with the contact distance between particles, �ij =� /�ij, and

by fixing � by demanding the same value of the isothermal
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compressibility as calculated from the compressibility equa-
tion of state �24�,


 ���P�
�n

�
T

= 1 − n �
i,j=1

2

xixjc̃ij�0� , �5�

and from the differentiation of the virial equation of state
�24�,

�P

n
= 1 +

2�n

3 �
i,j=1

2

xixj�ij
3 gij��ij

+� . �6�

Here, �ij = ��i+� j� /2 is the contact distance between par-
ticles, �i is the diameter of the particles of species i, n
=�i=1

p ni is the total bulk density, xi=ni /n=Ni /N is the molar
fraction of species i, gij�r�=hij�r�+1 is the partial radial
distribution function, P is the osmotic pressure in the system,
and c̃ij�0� denotes the Fourier transform c̃ij�q� of cij�r� evalu-
ated at q=0. Since the closure relations are approximations,
their use in calculating thermodynamic properties will lead,
in general, to different results, when the properties are deter-
mined by using different routes. Instead, by implementing
RY the value of � can be fixed by demanding the restoration
of thermodynamic consistency, at least partially, as seen
above.

Biben and Hansen were mainly interested in the behavior
of the long wavelength limit �q→0� of the concentration-
concentration structure factor Scc�q�, given by �28�

Scc�q� = x2
2S11 − 2x1x2S12�q� + x1

2S22�q� , �7�

since its divergence signals the end of thermodynamic stabil-
ity with respect to phase separation, as can be seen from the
equation of state �28�

Scc�0� =
NkBT

��2G/�x1
2�N,P,T

. �8�

Here, Sij�q�=xi�ij +nxixjh̃ij�q� is the partial structure factor
and G the Gibbs free energy of the system. By using OZ in
order to write Sij�q� in terms of c̃ij�q�, Eq. �7�, together with
the condition Scc�0�→�, leads to the expression

n1c̃11�0� +
n1n2c̃12

2 �0�
1 − n2c̃22�0�

= 1 �9�

for the spinodal curve characterizing the phase separation. It
means that the particles in the system demix when Eq. �9� is
fulfilled. Biben and Hansen found that it may occur for size
ratios �1 /�2	5. Indeed, this prediction has been corrobo-
rated by several authors, by means of experiments �29–34�
and of computer simulations �35–37�. They observed that the
segregated big particles condense in a phase whose density is
larger than the density of the same species in the homoge-
neous system. This result will help us to understand the
meaning of the contraction of the description explained in
the next section. It is widely accepted that binary hard
spheres in three dimensions exhibit a gas-liquid separation
for a certain range of size rations, but all of which seems to
be preempted by the freezing transition, i.e., the gas-liquid

transition is metastable with respect to freezing �38�.
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III. CONTRACTION OF THE DESCRIPTION

As seen in the previous section, the structure of an homo-
geneous colloidal mixture of p spherical species is given by
the OZ equation �24�

h̃ij�q� = c̃ij�q� + �
k=1

p

nkc̃ik�q�h̃kj�q� , �10�

written here in the Fourier space. This equation owns a very
important, but not much exploited property: It does not
change its form when only a part of the system can be ob-
served, i.e., its form is invariant under contractions of the
description. Let us suppose, without lost of generality, that
we can only observe the particles of species 1 in the mixture
of p components. In a light scattering experiment, for ex-
ample, this condition can be imposed by the wavelength of
the light, if it is comparable to �1 but very much larger than
the diameters of the other components. The other species are
there, but we suppose to ignore that fact. Therefore, we de-
scribe the structure of the observed particles by means of the
monodisperse OZ equation

h̃11�q� = c̃11
ef f�q� + n1c̃11

ef f�q�h̃11�q� . �11�

Since h̃11�q� is a quantity which can be measured, it has to
be the same in both Eqs. �10� and �11�, then the particles
have the same structure regardless of our ability to distin-
guish the different kinds of components. The other species
not longer appear as separated species in Eq. �11�. Instead,
their effects on the structure of component 1 are included in
c11

ef f�q�. This fact is denoted by the superindex ef f. The new
effective direct correlation function can be obtained in terms
of the direct correlation functions of the original mixture by
rewriting Eq. �10� in the monodisperse form �11�, i.e., ex-
ploiting the invariance of the form of the OZ equation under
contractions of the description. This leads to �8�

c̃11
ef f�q� = c̃11�q� + �

i�1

p c̃1i�q�nic̃i1�q�

�1 − nic̃ii�q��

+ �
i�1

p

�
j�1,i

p c̃1i�q�nic̃ij�q�njc̃j1�q�

�1 − nic̃ii�q���1 − njc̃jj�q��
+ ¯ �12�

In addition, the effective interaction potential u11
ef f�r� can be

obtained from Eqs. �11� and �12� by using a closure relation
of the general form �24�

c11
ef f�r� = − �u11

ef f�r� + h11�r� − ln�1 + h11�r�� + b11
ef f�r� ,

�13�

as we will see in the next section. Equation �12� can be
written in closed form by using matrix notation �11,22�. Its
present form, however, makes its application easier in the
following sections, since it straightforwardly takes a very
simple closed form in the case of binary and ternary mix-
tures.

Once the description is reduced, we can also calculate the
thermodynamic properties of the system composed of only
the observed species. The isothermal compressibility 
T, for

example, is given by �24�
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T
−1 = 1 − n1c̃11

ef f�0� . �14�

The expression for the spinodal curve characterizing a phase
transition between two phases of different densities can be
obtained from Eqs. �12� and �14�, together with the condition

T→�. For binary mixtures �p=2� it leads to

n1c̃11�0� +
n1n2c̃12

2 �0�
1 − n2c̃22�0�

= 1, �15�

which exactly agrees with Eq. �9� for the spinodal instability
with respect to phase separation in the original binary mix-
ture. When the condition �9� is fulfilled, the particles in the
mixture segregate. Equation �15� tells us that this phenom-
enon looks like a gas-liquid phase transition when only the
particles of species 1 are observed, which agrees with the
experimental observations in asymmetric binary mixtures of
hard spheres, as well as with computer simulation results for
the same systems �this gas-liquid phase transition is, how-
ever, metastable with respect to freezing �38��. In general,
the thermodynamic properties of the original mixture are not
all captured by the reduced description. However, the prop-
erties depending only on the structure of the surviving spe-
cies, which is invariant under contractions of the description,
can still be obtained from the reduced system, as in the case
of Eqs. �9� and �15�.

In the original mixture the particles get the structure de-
scribed by hij�r� due to their thermal agitation and to the
interactions given by uij�r�, i , j=1, . . . , p. In the case where
we can only observe the particles of species 1, they get the
same structure h11�r� as in the original mixture, but due to
the thermal agitation and to the effective interaction potential
u11

ef f�r�. The latter can be obtained, at a molecular level, from
the integration of the average forces calculated by fixing two
particles of species 1, separated by the distance r, and by
integrating the linear moment exchange between all the par-
ticles of the other species and the two fixed particles of spe-
cies 1. We carried out this calculation in a two-dimensional
binary mixture �p=2� of hard disks by means of molecular
dynamics simulations �MD�, for the cases of infinite dilution
of species 1 �n1→0�, size ratios �1 /�2=5 and 10, and con-
centrations �2=0.2 and 0.4. Here, �i=�ni�i

2 /4 is the two-
dimensional filling fraction of species i. The computer simu-
lations were performed in a quadratic simulation box with
standard periodic boundary conditions, using the Verlet algo-
rithm �39�. The number of particles used in this work for
�1 /�2=5 was N1=2 and N2=186 �460� for �2=0.2 �0.4�. For
�1 /�2=10 we used N1=2 and N2=408 �830� for �2=0.2
�0.4�. The length L of the simulation box was adjusted to
give the prescribed density of the system according to the
relation L2=N2 /n2. At the beginning of the simulation, the
two larger hard disks were placed at the center of the simu-
lation box, separated by the distance r, remaining fixed in
that position. The smaller hard disks were then placed ran-
domly in the simulation box in a nonoverlapping configura-
tion and allowed to move according to the Verlet algorithm,
until equilibrium was reached. Further configurations were
generated to calculate the average linear moment exchange.

The same procedure was repeated for different values of r in

051404
order to get the average force in the whole range of signifi-
cant separations. The effective interaction potential results
from the integration of the average force. The length L was
always large enough for the smaller disks to get their bulk
structure on the border of the simulation box. Therefore, the
larger particles at the center of one cell do not feel the other
particles of the same species in the other cells.

The effective interaction potentials calculated by MD are
shown in Figs. 1 and 2 by the open symbols. The original
binary mixtures are composed of hard disks of two different
diameters. Their interactions are only of exclude volume
type and, therefore, the free energy of the mixtures is only of
entropic nature. If we are not able to observe the particles of
species 2, although they are present in the system, which we

FIG. 1. The figure shows the depletion potential �u11
eff�r� for

two-dimensional binary mixtures of hard disks in the infinite dilute
limit of particles of species 1, �1→0, for the size ratio �1 /�2=5,
and filling fractions �2=0.2 and 0.4 of the particles of species 2.
The open symbols were obtained from molecular dynamics simula-
tions. The full lines correspond to the results obtained from the
MSA-PY approximation, the dashed lines to the results obtained
from the HNC-PY approximation, and the dotted lines to the dilute
limit in our equations.

FIG. 2. The figure shows the depletion potential �u11
eff�r� for

two-dimensional binary mixtures of hard disks in the infinite dilute
limit of particles of species 1, �1→0, for the size ratio �1 /�2=10,
and filling fractions �2=0.2 and 0.4 of the particles of species 2.
The open symbols were obtained from molecular dynamics simula-
tions. The full lines correspond to the results obtained from the
MSA-PY approximation, the dashed lines to the results obtained
from the HNC-PY approximation, and the dotted lines to the results

obtained from the dilute limit in our equations.
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suppose to ignore, we observe a monodisperse suspension
composed of particles of species 1 interacting with the po-
tential u11

ef f�r� shown in Figs. 1 and 2, which is long-ranged.
Thus, the free energy of the effective monodisperse system
contains a finite contribution from the excess energy. This
constitutes an interesting result: One can go from an entropic
system to an energetic system by ignoring a part of it. Alter-
natively, we can also say that the original binary mixture is
an entropic picture of the monodisperse system, the latter in
the sense that the particles of species 1 have the same struc-
ture in the entropic mixture as in the monodisperse suspen-
sion with interaction u11

ef f�r�. This assumption was corrobo-
rated by other authors �40�, who performed computer
simulations for three-dimensional binary mixtures of hard
spheres, for either the entropic mixture and the contracted
monodisperse suspension. The radial distribution function
g11�r� they found was the same in both cases. Although our
simulations were done for the infinite dilute limit of the ob-
served particles, n1→0, this does not affect the generality of
our results. Indeed, the contraction of the description is a
very general concept which can be applied even in the case
that we can only see two of the suspended particles. The rest
of them, of the same and of different species, determines the
effective interaction potential between the two observed par-
ticles, as addressed in Ref. �41�. In that special case, when
working with monodisperse systems, u11

ef f�r� and the potential
of mean force w11�r�=−ln�1+h11�r�� are the same.

The attractive well at contact shown in Figs. 1 and 2 is
due to the depletion effect arising from the expulsion of
small particles from the gap between the two large particles.
As expected from the Asakura-Oosawa approximation �AO�
�1,2�, its depth increases with �2 and with �1 /�2. Simulta-
neously, a potential barrier develops in front of the attractive
well, and the interaction becomes more long-ranged, oscil-
lating around zero at larger separations. This is due to the
correlations between the contracted particles, which are not
included in AO. We now develop a method able to capture
such effects.

IV. ENTROPIC POTENTIALS

The effective interaction potential u11
ef f�r� is obtained from

Eq. �13�, where c11
ef f�r� is given by the inverse Fourier trans-

form of Eq. �12�, and b11
ef f�r� needs further approximations. If

we take, for example, b11
ef f�r�=0, we get u11

ef f�r� from the hy-
pernetted chain approximation �HNC� �24�:

�u11,HNC
ef f �r� = + � for r � �1

= − c11
ef f�r� + h11�r� − ln�1 + h11�r�� for r  �1.

�16�

In the mean spherical approximation �MSA� �24� we get

�u11,MSA
ef f �r� = + � for r � �1

= − c11
ef f�r� for r  �1. �17�

One more approximation must still be done in order to obtain
the structure functions h �r� and c �r� of the original mix-
ij ij

051404
ture, so that we can evaluate c11
ef f�r�. Since the hard-core in-

teraction between overlapping particles never changes, next
we only try with the nonoverlapping part of the interaction
potentials, i.e., with r�1.

In the case of binary mixtures c11
ef f�r� becomes

c11
ef f�r� = c11�r� + F−1� n2c̃12

2 �q�
1 − n2c̃22�q� , �18�

where the symbol F−1�X� denotes the inverse Fourier trans-
form of X. If we take, for example, the Percus-Yevick ap-
proximation �PY� �24�,

cij�r� = exp�− �uij�r����ij�r� + 1� − �ij�r� − 1, �19�

for the binary mixtures of hard disks of the simulations
shown in Figs. 1 and 2, we get the results shown in the same
figures for �u11,HNC-PY

ef f �r� and �u11,MSA-PY
ef f �r�. In the notation

u11,X-Y
ef f �r� the symbol X stands for the approximation used for

b11
ef f�r� in Eq. �13�, and the symbol Y for the approximation

used in the calculation of the structure functions of the origi-
nal mixture. The theoretical results and the MD data qualita-
tively agree in the whole range of significant separations.
There are, however, appreciable quantitative differences in
the depth of the attractive well in the contact region and in
the height of the repulsive barrier in front of it. HNC-PY
considerably underestimates the depth of the depletion well,
and MSA-PY overestimates it a little. Both approximations,
HNC-PY and MSA-PY, underestimate the height of the re-
pulsive barrier. These differences, however, are rather similar
to those normally observed when studying the structure of
liquids �42�. Actually, the determination of the accuracy of
the approximations done in the integral equations theory of
liquids is often an empirical task. Therefore, we can speak
only a posteriori about the accuracy of our approximations
for u11

ef f�r�. This leads to some unexpected results. For ex-
ample, if we take RY for hij�r� and cij�r�, and MSA for
b11

ef f�r�, we get an effective interaction potential,
u11,MSA-RY

ef f �r�, which is much more inaccurate than
u11,MSA-PY

ef f �r�, although RY is a better approximation than PY
for the structure of the original mixture �this result is not
shown in the Figs. 1 and 2, but in Ref. �18��. The structure
functions hij�r� and cij�r� of the original mixture were ob-
tained in this paper from the numerical solution of Eq. �2� by
means of a five parameters version of the Ng algorithm �43�.

MSA-PY seems to be a very good approximation. This
can be understood from Eqs. �3� and �13�, which together
lead to

�u11
ef f�r� = �u11�r� + �c11�r� − c11

ef f�r�� + �b11
ef f�r� − b11�r�� .

�20�

This result means that �u11
ef f�r� is given by �u11�r� plus the

correlations terms c11�r�−c11
ef f�r�+b11

ef f�r�−b11�r�. If we ne-
glect the difference between the bridge functions, not the

bridge functions self, we get the expression
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�u11
ef f�r� = �u11�r� − F−1� n2c̃12

2 �q�
1 − n2c̃22�q� , �21�

which exactly agrees with u11,MSA-PY
ef f �r� for the case of an

original mixture of hard particles, where MSA and PY are
equivalent. Thus, MSA-PY in Figs. 1 and 2 results from
neglecting only the difference b11

ef f�r�−b11�r�. Moreover, if
we take RY instead of PY for the original mixture in �21�, we
obtain results for u11

ef f�r� which are still more accurate than
u11,MSA-PY

ef f �r� �this result is not shown in Figs. 1 and 2�. How-
ever, such improvement becomes relevant only close to the
instability described by Eq. �15�. The idea that u11

ef f�r� can be
seen as a perturbation around u11�r� has been used by several
authors in the past and is well explained in Ref. �44� by
following a rather different method than the one used in this
paper.

HNC-PY, on the other hand, looks really bad in compari-
son with the simulation data. This can be understood by tak-
ing n1→0 in Eq. �11�, which together with Eq. �16� leads to
�u11,HNC

ef f �r�=−ln�1+h11�r��. This agrees with the definition
of the potential of mean force w11�r� between particles of
species 1 �note that this is no longer true for the concentrated
systems�. Therefore, the results for �u11,HNC-PY

ef f �r� shown in
Figs. 1 and 2 correspond to the potential of the mean force
obtained from PY, what we have corroborated by comparing
�u11,HNC-PY

ef f �r� with −ln�1+h11�r��. Moreover, from Eqs. �11�
and �13� we get

�u11
ef f�r� = �w11�r� + n1�

V

c11
ef f�r��h11��r − r���dr� + b11

ef f�r� .

�22�

This result means that �u11
ef f�r� is given by �w11�r� plus the

correlation terms n1�Vc11
ef f�r��h11��r−r���dr�+b11

ef f�r�. If we
neglect the bridge function we recover �u11,HNC

ef f �r� in the
limit case n1→0. Thus, HNC-PY in Figs. 1 and 2 results
from neglecting b11

ef f�r�. Moreover, the difference between
�u11,HNC-PY

ef f �r� and the simulation data in those figures allows
for the evaluation of b11

ef f�r�. This could be an efficient
method to evaluate bridge functions through the effective
interactions instead of the structure functions, which involve
the inversion of the OZ equation and thereby introduce very
large errors at small distances. We will, however, not report
further in this direction at the moment.

In very diluted systems the virial-like expansion cij�r�
=��,�,. . .,�=0

� n1
�n2

�
¯np

�cij
��,�,. . .,���r� of the direct correlation

functions can be made in Eq. �21�. In the case of binary
mixtures of hard spheres it leads to

�u11
ef f�r� = − n2F−1�c̃12

�0,0��q�c̃21
�0,0��q�� �23�

=− n2�
V

c12
�0,0��r��c21

�0,0���r − r���dr�, �24�

for n1→0, up to linear terms in n2. Here, we used �1
−n2c̃22�q��−1=1+n2c̃22�q�+n2

2c̃22
2 �q�+¯ and the convolution

theorem for Fourier transforms. In addition, it is known

that �24�

051404
cij
�0,0��r� = − 1 for r � �ij

= 0 for r  �ij . �25�

Equation �23�, or Eq. �24�, can also be obtained from Eq.
�13�, or from Eq. �16�, by taking �h11�r���1 �remember that
we are trying with r�1� and neglecting b11

ef f�r�, as well as
from Eq. �17�. Following those routes we do need to take the
additional approximation c11

�0,1��r�=0. Moreover, the leading
terms of the bridge functions are of quadratic order in the
density �24� and, therefore, their exclusion of the dilute limit
in our equations is exact. The integral in Eq. �24� accounts
for the volume Vd of the region in the gap between the par-
ticles of species 1, separated by the distance r, from which
the particles of species 2 are excluded due to their simulta-
neous overlap with both particles of species 1. This result
can, therefore, be written as u11

ef f�r�=−�kBTN2 /V�Vd. Since
the term in parenthesis corresponds to the pressure of an
ideal gas composed of particles of species 2, the effective
interaction potential is equivalent to the decrement of the
free energy of the ideal gas when its volume is increased by
Vd. This corresponds to the Asakura-Oosawa �AO� approxi-
mation for the depletion forces �1,2,8�. This result means that
the dilute limit of our approach captures the exact dilute limit
of the depletion interaction potential. In the following sec-
tions we generalize this result to mixtures of more than two
components, as well as to nonspherical geometries, and use
the symbol u11,AO

ef f �r� when working in that limit case.
As we can see from Eqs. �13� and �16�–�21�, an evalua-

tion of u11
ef f�r� requires a complete knowledge of the structure

functions cij�r� and hij�r� of the original mixture. To proceed
along these lines makes sense when the contraction of the
description is imposed, for example, by experimental tech-
niques unable to detect all the components. Then, Eqs. �13�
and �16�–�21� allow for an interpretation of the results in
terms of models including the experimentally “invisible”
species. On the other hand, our approach apparently makes
no sense when the goal of the contraction of the description
is to simplify the mathematical problem. Fortunately, this is
not the case. Apart from the lot we can learn about depletion
forces just evaluating u11

ef f�r� in the cases in which the com-
plete problem can be solved, we also find that simple ap-
proximations for cij�r� and hij�r� could lead to useful expres-
sions for u11

ef f�r�. Equations �23� and �24�, for example, do not
use a precise input for cij�r� and hij�r�, and they still work
fine for some cases in which the contracted particles are re-
ally not diluted, as we show in the next sections. Indeed, the
generation of hierarchies, like the one defined by successive
contractions of the description, is representative of the usual
thinking of physicists working on many-body problems. This
allows for simple approximations at a higher level of de-
scription which conduce to accurate results in a more re-
duced level of the hierarchy.

V. BINARY AND TERNARY MIXTURES

Let us be very meticulous at the beginning of this section
in order to explain the method of evaluating entropic poten-

tials in the dilute limit. In a three-dimensional binary mixture
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of hard spheres the Fourier transform of c12
�0,0��r� is �45�

c̃12
�0,0��q� =

4�

q
�

0

�

rc12
�0,0��r�sin�qr�dr

=
4�

q3 �q�12 cos�q�12� − sin�q�12�� . �26�

Therefore, Eq. �23� takes the form

�u11,AO
ef f �r� = −

8n2

r
�

0

� �q�12 cos�q�12� − sin�q�12��2

q5

�sin�qr�dq , �27�

which can be analytically integrated to give

�u11,AO
ef f �r� = − �2��� + 1�3 −

3

2
�� + 1�2 r

�2
+

1

2

r3

�2
3	

�28�

for �1�r��1+�2, and 0 for larger distances. Here, �2
=�n2�2

3 /6 is the three-dimensional filling fraction of species
2, and �=�1 /�2 the size ratio. The contact value is
�u11,AO

ef f ��1
+�=−�2�1+3� /2�; the depletion attraction in-

creases either with �2 or �. Equation �28� can also be ob-
tained from Eq. �24�, rewritten as

�u11,AO
ef f �r� = −

2�n2

r
�

0

�

c12
�0,0��r��dr��

r−r�

r+r�
r�c21

�0,0��r��dr�

= −
2�n2

r
�

r−�12

�12

dr��
r−r�

�12

r�dr�, �29�

or from a geometrical sketch by evaluating the volume Vd of
the region in the gap between the particles of species 1 from
which a particle of species 2 is excluded due to its simulta-
neous overlap with both particles of species 1, as done by
Asakura and Oosawa �1,2�. The first expression in Eq. �29� is
obtained by going to polar coordinates, after integrating over
the angle �46�. The limits of integration in the second expres-
sion of Eq. �29� correspond to the simultaneous overlapping
condition of a particle of species 2 with both particles of
species 1, as required by Eq. �25�.

In the special case seen in the previous paragraph the
three routes, Eqs. �23� and �24�, as well as the AO procedure,
lead, more or less straightforwardly, to the analytical expres-
sion given in Eq. �28�. However, the first two routs quickly
lead to extremely complicated integrals, and the AO proce-
dure becomes intractable, when trying with more sophisti-
cated geometries. Nevertheless, Eq. �24� provides a numeri-
cal scheme which can be easily implemented in every case.
By constructing an spatial grid around the overlapping re-
gion, we can check the simultaneous overlapping condition
in every point of the grid. If the condition is fulfilled we add
a volume element to the corresponding discretization of the
integral in Eq. �24� and pass to the next point of the grid. In
the opposite case, we only pass to the next point of the grid,
and so forth. Let us now try this idea in the case of two-
051404
dimensional binary mixtures of hard disks, where it is al-
ready hard to get an analytical expression for the integral
involved in Eq. �23�.

The Fourier transform of c12
�0,0��r� is �45�

c̃12
�0,0��q� = 2��

0

�

rc12
�0,0��r�J0�qr�dr

= 2��12
J1�q�12�

q
, �30�

where Jm�qr� is the Bessel function of order m. Equation �23�
takes the form

�u11,AO
ef f �r� = − 2��12

2 n2�
0

� J0�qr�J1
2�q�12�

q
dq . �31�

We evaluate this integral numerically. The AO procedure al-
lows in this case for a straightforward evaluation of Vd, lead-
ing to

�u11,AO
ef f �r� = −

2�2

�
�1 + ��2�cos−1
 1

1 + �

r

�2
�

−
1

1 + �

r

�2
�1 − 
 1

1 + �

r

�2
�2	 �32�

for �1�r��1+�2, and 0 for larger distances. Here, �2
=�n2�2

2 /4 is the two-dimensional filling fraction of species
2, and �=�1 /�2 the size ratio. We can also take the grid
route by constructing a square grid of step �=�2 /10 in order
to evaluate numerically the integral in Eq. �24� in the form
described in the previous paragraph. We also took �
=�2 /20, but the result does not appreciably differ from the
one obtained with the larger step. All routes lead to the same
result, which corresponds to the dotted lines in Figs. 1 and 2.
In some practical situations it should be convenient to have
simple expressions for the potential at contact. In that case,
Eq. �32� can be approximately written as �u11,AO

ef f ��1
+��

−�2�2 /���1.89�1/2+0.66�−1/2+O��−3/2��. This is a very
good approximation for �2.

From the Figs. 1 and 2 we can see that the dilute limit
only captures the interaction potential in the range going
from the contact, r=�1, to the case in which a particle of
species 2 exactly fit in the gap between the two particles of
species 1, r=�1+�2. For larger distances the double overlap
is not longer possible. That is also the reason why the AO
limit does not capture the repulsive barrier growing in front
of the attractive contact well. This barrier can only be ex-
plained including the effects of a second particle of species
2, which makes it possible for the formation of overlapping
bridges between the particles of species 1 around the sepa-
ration r=�1+�2. We will come back to this point in Sec. IX.
From Figs. 1 and 2 we can also see that the contact values of
u11,HNC

ef f �r� and u11,AO
ef f �r� are very similar; both values consid-

erably underestimate the depth of the depletion well at con-
tact. However, they become very accurate for filling fractions
�2 of the order of 10%, or below it �this result is not shown

in Figs. 1 and 2�, which are values often met in experimental
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situations. In the next sections we only use the grid route
based on Eq. �24� in order to evaluate u11,AO

ef f �r�, but let us
first work a little with ternary mixtures.

Up to this point we have assumed that we can only ob-
serve the particles of species 1 in a mixture of p spherical
components. The other species are there, but we choose to
ignore that fact. Therefore, we can describe the structure of
the observed particles by means of the effective monodis-
perse OZ Eq. �11�. Let us now assume that we can observe
the particles of species 1 and 2 in the same mixture of p
spherical components. In this new situation the contraction
of Eq. �2� leads to the effective OZ equation for a binary
mixture,

h̃���q� = c̃��
ef f�q� + �

�=1

2

n�c̃��
ef f�q�h̃���q� , �33�

written here in the Fourier space. The effective direct corre-
lation function c̃��

ef f�q� is found to be given by

c̃��
ef f�q� = c̃���q� + �

i��,�

p c̃�i�q�nic̃i��q�

�1 − nic̃ii�q��

+ �
i��,�

p

�
j��,�,i

p c̃�i�q�nic̃ij�q�njc̃j��q�

�1 − nic̃ii�q���1 − njc̃jj�q��
+ ¯ .

�34�

Here, the greek indexes run over the observed species, i.e.,
� ,�=1,2. The c11

ef f�r� from Eq. �12� does not correspond to
the c11

ef f�r� from Eq. �34�, since the first one is a more con-
tracted member of the hierarchy than the latter. The first one
can be obtained after the contraction of species 2 in Eq. �33�,
which leads to Eq. �18�, but having the structure functions of
Eq. �33� as input. By using �34� in those expressions, Eq.
�12� can be recovered. To proceed along these lines allows
for the generation of hierarchies defined by successive con-
tractions of the description. However, in this paper we no
longer report on that question.

In the special case of ternary mixtures we can choose
from the contraction of two components, or of only one. If
we contract two components we get Eqs. �11� and �12� again,
but with p=3, which add some terms to Eq. �18�. The con-
traction of only one component corresponds to the case de-
scribed by Eqs. �33� and �34�, in which two species can be
observed. In that case, the effective crossed interaction po-
tential is given by

�u12
ef f�r� = �u12�r� − n3F−1� c̃13�q�c̃32�q�

1 − n3c̃33�q� , �35�

if we neglect the difference between the crossed bridge func-
tions b12

ef f�r�−b12�r�. In the case of systems composed of hard
particles, in the infinite dilute limit of observable species,
n1→0 and n2→0, up to linear terms in the density of the
contracted species, n , we get
3

051404
�u12,AO
ef f �r� = − n3F−1�c̃13

�0,0��q�c̃32
�0,0��q�� �36�

=− n3�
V

c13
�0,0��r��c32

�0,0���r − r���dr�. �37�

The integral in Eq. �37� accounts for the volume Vd of the
region in the gap between two particles of species 1 and 2,
separated by the distance r, from which a particle of species
3 is excluded due to its simultaneous overlap with both par-
ticles of species 1 and 2. Thus, the dilute limit in our equa-
tions also captures the AO approximation in the case of ter-
nary mixtures.

In three-dimensional systems Eqs. �36� and �37� can be
analytically evaluated to give �8�

�u12,AO
ef f �r� = − �3���̄ + 1�3 −

3

2
��̄ + 1�2 r

�3
+

1

2

r3

�3
3	

+
3�3

8�r/�3�
��1 − �2�2���̄ + 1� −

r

�3
	2

�38�

for �12�r��12+�3, and 0 for larger distances. Here, �i
=�i /�3 and �̄= ��1+�2� /2. This result can also be straight-
forwardly obtained from the AO procedure. The contact
value of Eq. �38� is �u12,AO

ef f ��12
+ �=−�3�1+3�1�2 / ��1+�2��.

Therefore, at fixed �2, the depletion attraction increases with
�1 up to the asymptotic value �u12,AO

ef f ��12
+ �=−�3�1+3�2�

when �1→�. As we will see in the next section, this case
corresponds to a binary mixture in front of a flat hard wall.

In two-dimensional systems Eq. �36� becomes

�u12,AO
ef f �r� = − 2��13�32n3�

0

� J0�qr�J1�q�13�J1�q�32�
q

dq .

�39�

We evaluate this integral numerically. The AO procedure al-
lows also in this case for a straightforward evaluation of Vd,
leading to

�u12,AO
ef f �r� = −

�3

�
�1 + �1�2�cos−1
 r1

1 + �1
�

−
r1

1 + �1
�1 − 
 r1

1 + �1
�2	

−
�3

�
�1 + �2�2�cos−1
 r2

1 + �2
�

−
r2

1 + �2
�1 − 
 r2

1 + �2
�2	 , �40�

for �12�r��12+�3, and 0 for larger distances. Here, r1
= ��3 /4r��4�r /�3�2+ �1+�1�2− �1+�2�2� and r2= �2r /�3�−r1.
We also take the grid route based on Eq. �37� by constructing
a square grid of step �=�3 /10. All routes lead to the same
results, which correspond to the dotted lines in Fig. 3. The
depletion attraction increases with �1, at fixed �2, until
reaching the asymptotic value corresponding to a flat hard
wall when �1→�. Indeed, u12,AO

ef f �r� can be interpreted as the

depletion interaction potential between a convex hard wall of
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radius of curvature �1 /2 and particles of species 2 immersed
in a bath of smaller particles of species 3. We try further with
wall effects in the next section.

VI. IN FRONT OF A HARD WALL

The concentration profile of a colloidal mixture of p
spherical components in front of a wall is described by the
inhomogeneous OZ equation �24�,

h̃wi�q� = c̃wi�q� + �
j=1

p

njh̃wj�q�c̃ji�q� , �41�

which has to be complemented with a closure relation of the
general form �24�

cwi�r� = − �uwi�r� + hwi�r� − ln�1 + hwi�r�� + bwi�r� .

�42�

Here, hwi�r� is the wall-particle total correlation function,
cwi�r� the wall-particle direct correlation function, uwi�r� the
wall-particle interaction potential, bwi�r� the wall-particle
bridge function, and cij�r� the same direct correlation func-
tion of the bulk suspension appearing in Eqs. �2� and �3�. The
wall-particle structure functions depend on the positional
vector r and, therefore, their Fourier transforms on the wave
vector q, since the wall breaks the isotropy of the system.
The properties of Eqs. �41� and �42� have been carefully
studied in a series of papers published in the last ten years,
for systems of charged and uncharged components �47–51�.
We will use here their invariance under contractions of the
description in order to get the effective wall-particle interac-
tion potential in systems composed of hard colloidal particles

FIG. 3. The figure shows the wall-particle depletion potential
�uw1,AO

eff �x� for a two-dimensional binary mixture of hard disks in
the dilute limit in our equations. The dotted lines correspond to the
case of convex hard walls with scaled radius of curvature R /�2

=5 and 10. They can also be interpreted as the dilute limit of the
effective interaction potential �u12,AO

eff �r� in an homogeneous ternary
mixture of hard disks with �2→�3, �1→�2, 2R→�1, and x
+�1 /2→r �see Sec. V�. The full line corresponds to the case of a
hard flat wall �R→��, and the dashed lines to the case of concave
hard walls with scaled radius of curvature R /�2=5 and 10. The
parameters of the binary mixture in front of the walls are �1→0,
�2=0.3, and �1 /�2=5.
in front of a hard wall.

051404
If we assume that we can only see the wall and the par-
ticles of species 1, the concentration profile of this species in
front of the wall is described by the effective monodisperse
inhomogeneous OZ equation �11�

h̃w1�q� = c̃w1
ef f�q� + n1h̃w1�q�c̃11

ef f�q� , �43�

with

c̃w1
ef f�q� = c̃w1�q� + �

i�1

p c̃wi�q�nic̃i1�q�

�1 − nic̃ii�q��

+ �
i�1

p

�
j�1,i

p c̃wi�q�nic̃ij�q�njc̃j1�q�

�1 − nic̃ii�q���1 − njc̃jj�q��
+ ¯

�44�

and c̃11
ef f�q� is given by Eq. �12�. The other species are there,

but we choose to ignore that fact, which is exactly what
forces us to develop an effective description of the system. In
the case of binary mixtures Eq. �44� leads to �neglecting the
difference bw1

ef f�r�−bw1�r��

�uw1
ef f�r� = �uw1�r� − n2F−1� c̃w2�q�c̃21�q�

1 − n2c̃22�q�  , �45�

and, therefore, to

�uw1,AO
ef f �r� = − n2F−1�c̃w2

�0,0��q�c̃21
�0,0��q�� �46�

=− n2�
V

cw2
�0,0��r��c21

�0,0���r − r���dr� �47�

in systems of hard particles, in the infinite dilute limit of
species 1, n1→0, up to linear terms in n2. As it can be seen
from Eq. �47�, the AO approximation is again captured by
the dilute limit of our equations. Equation �46� is still more
complicated to evaluate than Eq. �23�, due to its dependence
on the wave vector. In the case of flat hard walls, however,
Eq. �47� and the AO procedure allow for a straightforward
evaluation of uw1,AO

ef f �r�, which leads to

�uw1,AO
ef f �x� = − �2�1 + 3��
3

2
−

x

�2
�2

�48�

in three-dimensional systems, and to

�uw1,AO
ef f �x� = −

�2

2�
�1 + ��2

��� + 2 tan−1
 1 − 2x/�2

��1 + ��2 − �1 − 2x/�2�2�	
−

�2

�
�1 − 2x/�2���1 + ��2 − �1 − 2x/�2�2 �49�

in two-dimensional systems, both for �1 /2�x��1 /2+�2
and 0 for larger distances. Here, �=�1 /�2 and x is the
distance between the surface of the wall and the center

of particles of species 1. The contact values are
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�uw1,AO
ef f ��1

+ /2�=−�2�1+3�� and �uw1,AO
ef f ��1

+ /2��
−�16�2 /15���1+5���−1/2for �2, respectively. Equations
�48� and �49� can also be obtained from the limit �1→�, at
fixed �2, of Eqs. �38� and �40�, respectively. The result for
the two-dimensional case is shown in Fig. 3 by the full line
for a binary mixture with �2=0.3, and �1 /�2=5. The deple-
tion attraction increases with the radius of curvature R of the
convex walls, reaching an extreme value for flat walls �R
→��.

We now consider binary mixtures of hard spheres in front
of concave hard walls of radius of curvature R in the dilute
limit. Although it is possible to get an analytical expression
for uw1,AO

ef f �x� also in this case, we prefer to work in the fol-
lowing with the numerical evaluation of Eq. �47� by con-
structing a square grid of step �=�2 /10 around the double
overlapping region. In the case of two-dimensional systems
the latter is defined by the conditions

R − �x2
2 + y2

2 �
�2

2

��x2 + x − R�2 + y2
2 � �12, �50�

which have to be fulfilled simultaneously. Here, �x2 ,y2� and
�R−x ,0� are the coordinates of the particles of species 2 and
1, respectively, referred to the center of curvature of the con-
cave wall. We check the overlapping conditions �50� in every
point of the grid. If both conditions are fulfilled simulta-
neously we add a volume element to the integral in Eq. �47�.
In the opposite case, we pass to the next point of the grid.
The results obtained by this way are shown in Fig. 3 by the
dashed lines. As we can see from that figure, the more con-
cave the wall, the larger the depletion attraction.

The previous results indicate that the suspended particles
in front of a wall are pushed to the wall due to the depletion
interaction, and that the amplitude of such interaction can be
manipulated by changing the parameters of the suspension,
such as particle size and concentration, and of the wall, such
as its curvature. This occurs although we are working with
hard particles and hard walls, whose interaction is only re-
pulsive and short-ranged. The origin of the long-ranged
depletion forces is that the system increases its entropy when
the larger particles are placed close to the wall, letting free
the volume of the bulk for the smaller particles, which are
very much more numerous. Moreover, the entropy of the
smaller particles may become still larger when the larger
particles are put in an ordered array. Indeed, this phenom-
enon has been already used in order to generate self-
assembled structures, as in the crystallization of protein sus-
pensions �52� or in the selective adsorption of colloidal
particles on structured walls �53,54�. Regarding the latter,
there is strong evidence for nonadsorpion of hard spheres on
flat hard walls �47–51�. However, as we will see in the next
section, the situation looks very different when the wall has a
relief pattern.
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VII. SURFACES OF ENTROPIC POTENTIAL

When the walls have a relief pattern combining concave
and convex regions the depletion potential at contact defines
a potential landscape that we will call here surface of en-
tropic potential. One of the simplest cases, in which we can
calculate this property, is when an otherwise flat wall has a
linear step edge of height h along the y-axis. Let us consider
a hard wall with a step edge of height h=10�2, and, in front
of it, a binary mixture of hard spheres with parameters �1
→0, �2=0.3, and �1 /�2=5. These values are the same as in
Fig. 3, but a direct comparison is not possible since we are
trying with a three-dimensional system this time. The upper
level of the step is in the region with x�0 and z=h, on a
plane parallel to the xy-plane, and the lower level in the
region with x�0 and z=0, on the xy-plane. Note that the
meaning of the variable x differs from the one previously
used in this paper.

In the infinite dilute limit of particles of species 1, up to
linear terms in n2, the wall-particle depletion potential is
given by Eq. �47�, with the appropriate overlapping condi-
tions for cw2

�0,0��r� and c12
�0,0��r�. In order to evaluate this equa-

tion at contact we follow the grid route by constructing a
cubic grid of step �=�2 /10 over the wall. Then, we check in
every point of the grid the condition of simultaneous over-
lapping of a particle of species 2 with the wall and with a
particles of species 1 always in contact with the wall. The
latter is then moved along the x-axis in order to scan the
region around the step edge. The results we found for
�uw1,AO

ef f �x ,z� are shown in Fig. 4. The line represents a con-
tact scanning of the wall, beginning on the upper level and
ending on the lower level of the step. Far away from the edge
the scanning particle only see a flat wall and, therefore, the
value �uw1,AO

ef f �x�0,h�=�uw1,AO
ef f �x�0,0�=−4.8 can be also

obtained from the contact limit of Eq. �48�. Closing the edge
from the left, the scanning particle first feels a force opposite
to its motion, parallel to the wall, and a some weaker attrac-

FIG. 4. The figure shows the contact wall-particle depletion po-
tential �uw1,AO

eff �x ,z� for a binary mixture of hard spheres, in the
dilute limit, in front of a hard wall with a linear step edge of height
h=10�2 along the y axis. The upper level of the step is in the region
with x�0 and z=h, on a plane parallel to the xy plane, and the
lower level in the region with x�0 and z=0, on the xy plane. The
parameters of the binary mixture in front of the wall are �1→0,
�2=0.3, and �1 /�2=5.
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tion perpendicular to the wall. Those features arise from the
collisions with the smaller spheres in front of the lower level
of the step and in the neighborhood of the edge. After cross-
ing this region, the scanning particle falls into a very attrac-
tive well located on the concave edge of the step. In order to
leave this well the particle has to move against a force, par-
allel to the wall, pushing it back to the concave edge. Some
of these predictions have been already observed in the lab
�53�. It has also been shown that the attractive well at the
concave edge could lead to the selective deposition of par-
ticles �54�. Our results are in quantitative agreement with the
experimental data.

We now repeat the same calculation, but for a hard wall
with a linear barrier of height h=10�2 and thickness l=2�2
along the y-axis. The top of the barrier is in the region with
−�2�x��2 and z=h, on a plane parallel to the xy-plane,
and the rest of the wall in the region with x�−�2, or x
��2, and z=0, on the xy-plane. In Fig. 5 we show the con-
tact value of the dilute limit of the wall-particle depletion
potential for the same binary mixture of Fig. 4. The line
represents a contact scanning of the wall, beginning on the
left side of the barrier �x�−�2; z=0�, climbing up, crossing
the barrier �−�2�x��2; z=h�, going down, and ending on
the other side �x��2; z=0�. Most of the features of this
potential can be understood as a superposition of two oppo-
site lying step edges. Nevertheless, at the center of the top of
the barrier a second attractive well is developed, which could
trap the particles in both directions, parallel and perpendicu-
lar to the wall. This may also lead to selective adsorption of
colloidal particles in one-dimensional crystal arrays.

The cases investigated above show that the geometry of
the wall plays a very important role in the behavior of the
wall-particle depletion potential. Indeed, Eq. �47� allows for
the design of surfaces of entropic potential by just choosing
the geometrical features of the wall, and/or the parameters of
the suspension. Basically, this means that the entropy of the

FIG. 5. The figure shows the contact wall-particle depletion po-
tential �uw1,AO

eff �x ,z� for a binary mixture of hard spheres, in the
dilute limit, in front of a hard wall with a linear barrier of height
h=10�2 and thickness l=2�2 along the y axis. The top of the bar-
rier is in the region with −�2�x��2 and z=h, on a plane parallel
to the xy plane, and the rest of the wall in the region with x�−�2,
or x��2, and z=0, on the xy plane. The parameters of the binary
mixture in front of the wall are �1→0, �2=0.3, and �1 /�2=5.
system can be manipulated in order to induce a wished struc-
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ture in a part of it. We will report further about this issue in
a future paper. For the moment, let us please investigate what
happens when the depleting particles are no longer spherical.

VIII. CONTRACTION OF THE GEOMETRY

The contraction of the description procedure we have de-
veloped for homogeneous mixtures of spherical particles in
the previous sections can be straightforwardly extended to
the case of homogeneous mixtures of nonspherical particles,
whose structure is given by the orientation dependent
Ornstein-Zernike equation �24�

hij�r12,u1,u2� = cij�r12,u1,u2� + �
k=1

p
nk

�
�

V
�

�

dr3du3

�cik�r13,u1,u3�hkj�r32,u3,u2� , �51�

as we have already reported in a previous paper �17�. We
illustrate here this idea for a binary mixture of spherical and
nonspherical hard particles by assuming that the spherical
particles are the observed species, indexed as species 1. The
contraction of the nonspherical species, indexed as species 2,
leads then to the effective OZ equation

h11�r12� = c11
ef f�r12� + n1�

V

dr3c11
ef f�r13�h11�r32� �52�

with

c11
ef f�r12� = c11�r12� +

n2

�
�

V
�

�

dr3du3c12�r13,u3�c21�r32,u3�

+ ¯ . �53�

The functions hij�r12=r2−r1 ,u1 ,u2� and cij�r12,u1 ,u2� in
Eq. �51� are the total and direct correlation functions be-
tween a particle of species i with its center of mass at r1 and
orientational vector u1, and a particle of species j with its
center of mass at r2 and orientational vector u2. The quantity
� refers to the total solid angle; 4� for three-dimensional
systems, and 2� for two-dimensional systems. For spherical
particles the structure functions only depend on the distance
r12= �r12� between particles. Equation �53� corresponds to Eq.
�18�, but is written in the real space. The points ¯ stand for
all the terms not explicitly given, which are of quadratic and
higher order in n2.

In the infinite dilute limit of particles of species 1, up to
linear terms in n2, the depletion potential is given by

�u11,AO
ef f �r12� = −

n2

�
�

V
�

�

dr3du3c12
�0,0��r13,u3�c21

�0,0��r32,u3�

�54�

where the correlation functions c12
�0,0��r13,u3� and

c21
�0,0��r32,u3� between spherical and nonspherical particles

are −1 when both particles overlap and 0 elsewhere. As in
the previous sections, Eq. �54� can also be written as
�u11,AO

ef f �r�=−n2Vd, with Vd being the volume of the region in
the gap between two particles of species 1, separated by the
11
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distance r, from which the particles of species 2 are excluded
due to their simultaneous overlap with both particles of spe-
cies 1. After assuming that the nonspherical particles are hard
spherocylinders of diameter �2 and length �2+L, we evalu-
ate the integral in Eq. �54� by following the grid route, i.e.,
by constructing a spatial grid around the overlapping region.
Spatial grid steps of 0.001�2 and angular grid steps of 1°
provide accurate values for �u11,AO

ef f �r� �up to the third sig-
nificant digit�. Since we are working with three-dimensional
systems we take �=4� in our equations.

One is tempted to think that the depletion attraction pro-
duced by the spherocylinders should be somewhere between
the one due to small spheres of diameter �2 and the one due
to small spheres of diameter �2+L. Therefore, in order to
understand how the entropic potential change due to the ge-
ometry of the contracted particles, we first compare in Table
I the contact value �u11,AO

ef f ��1
+� for three different binary

mixtures composed of large hard spheres of diameter �1 with
additional �I� small hard spheres of diameter �2, �II� small
spherocylinders of diameter �2 and length �2+L, and �III�
small hard spheres of diameter �2+L. We identify those sys-
tems in our notation with the indexes I–III, respectively. The
corresponding volume fractions are �2=�n2�2

3 /6, �2
=�n2�2

3�1+3L /2�2� /6, and �2=�n2�2
3�1+L /�2�3 /6. We use

�1=10�2 and L=5�2, take care of being well below the criti-
cal volume fraction in which two rotating spherocylinders
partially overlap, and assume the same volume fraction for
the three mixtures, which implies different number densities.
Surprisingly, the larger attractions are produced by the
spherocylinders, although the number density n2 in model I
is 8.5 times larger than in model II. This results alone from
the larger values of Vd for nonspherical particles. In the sys-
tems of Table I, for example, the value of Vd at contact for
spherocylinders is approximately 13.032 times larger than
the one for small spheres of diameter �2.

The effect of the geometry of the depleting agent can also
be appreciated in Fig. 6, where we show Vd�r� for six mix-
tures of the type II with �1=10�2 and several values of L,
ranging from 0 �model I� to 5�2. The corresponding entropic
potential will show basically the same qualitative behavior as
in the case of mixtures of spheres, but it will be more attrac-

TABLE I. The table shows the contact value �u11,AO
ef f ��1

+� for
three different binary mixtures composed of large hard spheres of
diameter �1 with additional �I� small hard spheres of diameter �2,
�II� small spherocylinders of diameter �2 and length �2+L, and �III�
small hard spheres of diameter �2+L. The other parameters are
�1=10�2 and L=5�2.

�2

�u11,AO
ef f ��1

+�

I II III

0.01 −0.16 −0.2453 −0.035

0.02 −0.32 −0.4906 −0.070

0.03 −0.48 −0.7359 −0.105
tive at contact and more long-ranged. The volume Vd�r�
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becomes zero first when a spherocylinder, positioned along
the line connecting the centers of the large spheres, exactly
fits the gap between them, i.e., at r=�1+�2+L. The volume
of double overlapping increases very fast with L. This effect
should produce a phase separation in the suspension of
spherical and nonspherical particles at smaller volume frac-
tions than in the case of a binary mixture of hard spheres.
Moreover, it is straightforward to show that Eq. �54� recovers
the case with �2=0 �binary mixture of hard spheres and hard
needle-like particles� which has been reported by other au-
thors �55,56�. In general our results agree with experimental
data �57�.

It is often the belief that the deeper attraction produced by
rod-like particles is due to the rotational contributions to the
entropy of the system. From Eq. �54� it can be seen, how-
ever, that it is not the case in the AO limit. This equation can
be written as u11,AO

ef f �r�=−�kBTN2 /V�Vd. The term in paren-
thesis is an ideal gas property, which does depend on the
translational degrees of freedom, but not on the rotational
degrees of freedom. The volume Vd is a pure geometric prop-
erty, which does not depend on the dynamics of the particles.
The rotational contributions to the entropy become really
relevant only with increasing volume fractions, due to the
correlations between rod-like particles, which are neglected
in Eq. �54� �17�.

IX. CONCENTRATION EFFECTS AND ENERGETIC
CONTRIBUTIONS

When the concentration of depleting particles increases,
the attractive well at contact becomes deeper and a potential
barrier develops in front of it, followed by a secondary well,
as shown in Figs. 1 and 2. This is due to the correlations
between the contracted particles, which are not included in
AO. In order to include them in our equations, we expand, in
Eq. �21�, the direct correlation functions in the virial-like
form cij�r�=��,�=0

� n1
�n2

�cij
��,���r� and get the following expres-

FIG. 6. The figure shows the double overlapping volume Vd�r�
for six mixtures of large hard spheres of diameter �1 and small
spherocylinders of diameter �2 and length �2+L. The other param-
eters are �1=10�2, and L ranges from 0 to 5�2.
sion for the depletion potential:
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�u11
ef f�r� = �u11�r� − n2F−1�c̃12

�0,0��q�c̃21
�0,0��q��

− n2
2F−1�c̃12

�0,0��q�c̃22
�0,0��q�c̃21

�0,0��q��

− n2
3F−1�c̃12

�0,0��q�c̃22
�0,0��q�c̃22

�0,0��q�c̃21
�0,0��q�� + ¯ ,

�55�
where we neglected the functions c12

�0,1��r� and c12
�0,2��r� in the

terms of quadratic and cubic order in n2. Thus, the first term
�after the naked potential �u11�r��, which corresponds to the
AO approximation and is denoted by 1B in this section, can
be interpreted as representing single bridges between two
particles of species 1 formed by a particle of species 2. The
second term, which we will denote here by 2B, represents the
bridges between two particles of species 1 formed by two
particles of species 2. The third term, denoted by 3B, repre-
sents triple bridges formed by two particles of species 1 and
three particles of species 2 in between, and so forth.

We evaluate the first terms of Eq. �55� for a binary mix-
ture of hard spheres with �1=10�2, �2=0.05, and �1→0 in
order to study how the correlations between the contracted
particles determine the form of the interaction potential be-
tween the observable particles. In Fig. 7 we show that the
term 1B leads to the depletion attraction at contact, as we
already knew from the previous sections. The double
bridges, or term 2B, lead to the repulsive barrier in front of
the attractive well at contact, as shown in Fig. 7 by the sum
1B+2B. Moreover, the triple bridges produce the secondary
attraction in front of the repulsive barrier, as shown by the
sum 1B+2B+3B. The open circles were obtained from the
MSA-PY approximation and are expected to be very close to
the real depletion potential due to the small value of the
volume fraction.

The correlations between the contracted particles become
relevant when the concentration of one or more species in-
creases, as well as when one or more species are interacting
with longer ranged potentials than the hard core. Indeed,
depletion forces can be strongly affected if van der Waals or
Coulombic interactions are present in the system. As shown
in Fig. 7, if we want to capture such concentration effects
and energetic contributions we have to go beyond the AO
approximation. The form in which we did it in Fig. 7, how-

FIG. 7. The figure shows the single bridges 1B, double bridges
2B, and triple bridges 3B contributions to the depletion potential in
a mixture of hard spheres with �1=10�2, �2=0.05, and �1→0.
Those results are compared to the MSA-PY approximation �open
circles�.
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ever, is only useful to understand the way in which those
correlations will affect our results at a qualitative level. If we
want to reach quantitative accuracy in our calculations we
necessarily have to try with the complete problem, i.e., with
the complete evaluation of Eq. �21�. We will report about this
problem in a future paper.

X. CONCLUSIONS

The main result of this paper is Eq. �20� in all its varia-
tions. This equation is not new in the literature, it has been
already written in other reports. However, it is exhaustively
studied in the framework of the contraction of the description
formalism we developed for depletion interactions. It tells us
how to calculate the depletion potential between two par-
ticles of a given species immersed in a colloidal suspension
where other species are also present. The approximation
�21�, where the difference between the bridge functions is
neglected, results to be very accurate, at least for the case in
which the depletion interactions are only of entropic nature.
In order of importance we then have Eq. �24� in all its varia-
tions. It is obtained from the dilute limit in Eq. �20� and
corresponds to the Asakura-Oosawa approximation. There-
fore, Eq. �24� is also not new in the literature, but written in
a different form given in this paper. We exploited that feature
in order to systematically study a large variety of colloidal
systems of spherical and nonspherical particles, in two and in
three dimensions, in the bulk and in front of a hard wall with
a relief pattern. The main proposal in this paper is that the
equations for the structure of complex liquids in equilibrium
should keep the same form when a contraction of the de-
scription is performed. This idea applied to the Ornstein-
Zernike equation leads to the results enumerated above.

Although this paper is dedicated to dilute systems, we
perform some simulations and theoretical calculations for
systems concentrated in the contracted species in order to
test the accuracy of our approximations and the correctness
of the interpretations we give to our theoretical develop-
ments. Moreover, we were able to show that the concentra-
tion effects and energetic contributions to the depleting inter-
actions arise from the formation of multiple bridges of
contracted particles between two given particles of the ob-
servable species.

While studying the depletion interaction between two
large spherical particles induced by small spherocylinders we
found that the Asakura-Oosawa approximation does not in-
clude the effects of the rotational contributions to the en-
tropy, although it is often the belief. Those contributions can
be very important, but the correlations between the sphero-
cylinders, which are neglected at the level of AO, must be
included in the theory in order to capture them. Anyway,
rod-like particles are found to be able to induce larger and
more long-ranged depletion attractions than spherical par-
ticles with similar parameters.

The inhomogeneous version of Eq. �24� allows us to cal-
culate the depletion interaction between spherical particles
and structured hard walls, i.e., hard walls with a relief pat-
tern. Convex regions of the wall are found to interact weakly
with the particles, while the concave regions become very

attractive. The crossover from a convex to a concave region
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is found to induce a depletion force parallel to the wall.
Therefore, it may be possible to design walls able to capture
the colloidal particles in both directions, perpendicular and
parallel to the wall, which could be of technological rel-
evance.

Finally, we would like to point out that our approach
works fine in both even and odd dimensions.
�30� J. S. van Duijnevldt, A. W. Heinen, and H. N. W. Lek-
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